
© 2023 ThoughtFocus

The ThoughtFocus
LLM Platform
Technical Whitepaper / Solution Brief

TABLE OF CONTENTS

SUMMARY (TLDR) 3

BACKGROUND 4

VISION & OBJECTIVES 5

SOLUTION (THOUGHTFOCUS’ LLM PLATFORM) 6

KEY POINTS 7

CONCLUSION 9

APPENDICES 10

REFERENCES 17

2LLM Platform

SUMMARY (TLDR)
Large language models (LLMs) like ChatGPT have transformed human-computer interaction by generating
human-like text, translating languages, answering questions, and writing code. This has sparked discussions
about their societal impact including their limitations and ethical concerns. Businesses wish to integrate LLMs
to automate tasks, but understanding their capabilities and limitations is crucial.

Businesses face a challenge of inadequate development staff due to technical skills shortage, limited
incentives, and employee turnover. The complexity of modern applications and employee churn hinder
efficient software utilization. As software evolves rapidly, businesses struggle to adapt and routine tasks
involving decisions potentially slow down processes. Automating these tasks could enhance efficiency, but
challenges remain.

ThoughtFocus aims to address these challenges by leveraging AI technologies. They intend to apply existing AI
products to clients' unique needs, using LLMs with short and long-term memory, tooling, and guidance.
Autonomous Agents are created to make diverse decisions, augmenting human roles, and enabling
innovation. This approach accelerates results, diversifies products, and reduces costs.

ThoughtFocus proposes an LLM Platform utilizing these Agents to resolve staffing and reduce complexity by
augmenting human roles, achieving autonomy, and enhancing collaboration. The platform distills
contemporary frameworks, creating common components adaptable to clients' needs. Modularity is a focus,
allowing component swapping to fit clients' requirements. Integrations are loosely coupled, enabling
flexibility, including open and closed source software for specific client needs.

3LLM Platform

External Interfaces

LLM Platform

Process & Autonomous Decision Making

Interacts withFront end for

uses Uses
Retrieves

Retrieves

In
de

xe
s

E
xt

e
rn

al
 D

at
a

In
te

rn
al

 D
at

a

Uses

Uses Uses Uses Uses

Open AI
OpenAI

Chat GTP4All

External LLMs

GPT-J

Messages

Runs

Integrations

Integrations

In
te

gr
at

io
ns

Provides ContextInteracts with

Tools

E
xte

rn
al A

P
Is

E
xe

cu
tab

le
s

MemoryPrompt

Base Model Connection

DecisionsTools

Agent

Chain

BACKGROUND

4LLM Platform

Large language models (LLMs) have recently stirred significant excitement, revolutionizing how we perceive
and interact with machines. These models, such as OpenAI’s ChatGPT-41 , are advanced AI systems capable of
understanding and generating human-like text. They can translate languages, answer questions, write code or
create written content with near-human accuracy, using predictive analysis based on a massive compendium
of human knowledge. Their emergence has not only heightened expectations for a new era of human-
computer interaction, but also sparked far-reaching discussions about their potential impact on society,
economy, and culture2.

Businesses and users worldwide are increasingly interested3 in exploring the potential of large language
models, such as OpenAI’s ChatGPT-44, for a variety of applications, but particularly in technology, education,
and business services. However, the effective implementation of these models requires a comprehensive
understanding of their capabilities, limitations, and ethical considerations5. This will enable businesses to
maximize their benefits while mitigating potential risks.

OPPORTUNITY
In the rapidly evolving digital landscape, businesses, including technology and financial organizations, are
striving to remain competitive and relevant by offering advanced and innovative feature sets to their
customers. However, these businesses are grappling with a significant challenge of lacking the necessary
development staff6. This lack is primarily attributed to inadequate technical skills, limited financial incentives
to attract the right talent, and increasing employee churn, which hampers the development of advanced
features in their products and services.

As businesses increasingly depend on various software applications to enhance their efficiency & productivity,
there is a growing concern about their ability to understand their own software effectively. This concern is
amplified by the increasing skills gap (particularly churn7), the difficulty of recruiting and retaining long-term
talent, and losing organizational knowledge. The complexity8 of modern applications, coupled with staff
turnover, often leaves businesses in a state of confusion and uncertainty about utilizing their software to its full
potential. The problem is exasperated by the rapid advancements in software technologies, which often
outpace the ability of businesses to adapt and understand them.

In the contemporary business landscape, businesses are not only striving to stay ahead of the curve by
retaining long-term talent and maintaining complex systems but also releasing more features to their
customers. Routine yet slightly complex tasks, beyond that of current automation as these tasks require
decisions, currently require human intervention and decision-making often slow down business processes. If
these tasks could be automated, businesses could greatly improve their processes and increase their speed of
operation. However, the integration and deployment of such advanced automation technology presents its
own set of challenges, which until now has been difficult to solve at scale.

1 (OpenAI, 2023)
2 (Forbes, 2023), (Tamkin & Ganguli, 2021)
3 (Hu, 2023)
4 (Statista, 2023)
5 (Brown, Mann, Ryder, Subbish, & Kaplan, 2020)
6 (Capranos & Magda, 2023)
7 (Capranos & Magda, 2023)
8 (Carey, 2021), (Carnes, 2020), (Cassel, 2020)

ThoughtFocus recognizes the trifecta of problems: the lack of skilled development staff, software’s increasing
complexity and decreasing understandability, and completing routine yet slightly complex tasks (the “busy
work”). We also recognize the ever-improving AI technologies and their increasing consumption and impact.
To our understanding, there is no one product to fit all our clients’ niche challenges by leveraging AI
technologies, which is the void we aim to fill.

Our vision is to take existing AI products and apply them to each of our client’s unique stacks, from Cloud
Foundations to DevOps principles and practices. Our approach, based on contemporary frameworks9, uses
LLMs in conjunction with abstract concepts such as short- and long-term memory (i.e., context), tooling (e.g.,
organizational business systems), and providing guidance (i.e., prompting). This can then be applied to not just
one but multiple models, allowing organizations to choose the appropriate LLM for their given cost/benefit
analysis.

Our vision is that agents, either individually or as a collection, will augment and fulfill roles, such as product
owners, developers and platform engineers, permitting humans more time to think, innovate, and create.
Humans could then focus on differentiating value and features and less on task creation and code-writing,
using an orchestrated set of agents to complete onerous and less-valuable yet slightly complex activities. Due
to this speed and automation, organizations achieve results in less time and a more diverse set of products
meeting their customers’ needs at a lower cost.

To achieve this, we have developed an LLM Platform that is adaptable to our clients and allows rapid iteration
to achieve their goals

VISION AND OBJECTIVES

In the rapidly evolving digital landscape, businesses, including technology and financial organizations, are
striving to remain competitive and relevant by offering advanced and innovative feature sets to their
customers. However, these businesses are grappling with a significant challenge of lacking the necessary
development staff6. This lack is primarily attributed to inadequate technical skills, limited financial incentives
to attract the right talent, and increasing employee churn, which hampers the development of advanced
features in their products and services.

As businesses increasingly depend on various software applications to enhance their efficiency & productivity,
there is a growing concern about their ability to understand their own software effectively. This concern is
amplified by the increasing skills gap (particularly churn7), the difficulty of recruiting and retaining long-term
talent, and losing organizational knowledge. The complexity8 of modern applications, coupled with staff
turnover, often leaves businesses in a state of confusion and uncertainty about utilizing their software to its full
potential. The problem is exasperated by the rapid advancements in software technologies, which often
outpace the ability of businesses to adapt and understand them.

5LLM Platform

In the contemporary business landscape, businesses are not only striving to stay ahead of the curve by
retaining long-term talent and maintaining complex systems but also releasing more features to their
customers. Routine yet slightly complex tasks, beyond that of current automation as these tasks require
decisions, currently require human intervention and decision-making often slow down business processes. If
these tasks could be automated, businesses could greatly improve their processes and increase their speed of
operation. However, the integration and deployment of such advanced automation technology presents its
own set of challenges, which until now has been difficult to solve at scale.

We build autonomous Agents that make diverse decisions and take diverse
actions, within and using organizational-specific guardrails, standards, and tools.

9 (LangChain, 2023), (SuperAGI, 2023), (Auto-GPT, 2023)

SOLUTION (THOUGHTFOCUS’ LLM PLATFORM)

6LLM Platform

We see the value of autonomous Agents in the future for our clients, who struggle with staffing issues and
increasing software complexity. Agents can fulfil roles within our clients’ organizations augmenting existing
staff and providing capacity to do more with less. Additionally, by extending Agents and allowing
collaboration between them, we see orchestration of both to achieve true autonomous affect with minimal
complexity, with or without human intervention.

Our solution is to take contemporary frameworks, distill to the common components as described below, and
create an LLM Platform. The diagram below illustrates the bringing together of those components. Note the
interactions between the various components, particularly how multiple Agents take center stage.

Bench marking celebrated frameworks allows us to be opinionated about our approach yet still support a
diverse range of components that currently exist in the community. Plus, there is nothing stopping us from
developing and supporting either our own or clients’ unique agents, chains, tools, and memory constructs.

The fluidity of the design has the additional benefit of utilizing any LLM. Our recent developments rely on
OpenAI’s ChatGPT due to its current status as the premier LLM available today—but with an LLM platform, the
agent can use the then-leading (or perhaps more nuanced) product available. Models may offer different
cost/benefit ratios or specific functionality that our clients should be able to use to their needs for their specific
applications. Our clients should be able to use the model that offers the right capabilities at the right price at
the right time and be able to “hot swap” when needed.

Swapping LLMs is only one element of modularity considered within our Platform. All Integrations are loosely
coupled to the Agents, allowing us to again swap and change them as needed to best fit clients’ needs. For
example, the use of both open and closed source Tools can be utilized. The LangChain framework already
offers a Tool that can connect to GitHub, allowing agents to pull and push code commits as needed. If another
versioning system was used and needed to be closed source, say an internal BitBucket repository, then
another Tool would be developed for our client’s exclusive use.

Figure 1 ThoughtFocus Large Language Model (LLM) Platform

External Interfaces

LLM Platform

Process & Autonomous Decision Making

Interacts withFront end for

uses Uses
Retrieves

Retrieves

In
de

xe
s

E
xt

e
rn

al
 D

at
a

In
te

rn
al

 D
at

a

Uses

Uses Uses Uses Uses

Open AI
OpenAI

Chat GTP4All

External LLMs

GPT-J

Messages

Runs
Integrations

Integrations

In
te

gr
at

io
ns

Provides ContextInteracts with

Tools

E
xte

rn
al A

P
Is

E
xe

cu
tab

le
s

MemoryPrompt

Base Model Connection

DecisionsTools

Agent

Chain

7LLM Platform

KEY POINTS
CHAINS AND AGENTS
 Business processes and roles requiring slightly complex creation or understanding can be supplanted with

Chains and Agents. Chains provide the option to automate several step by step business processes that
have slightly complex tasks. The tasks, now completed by an LLM, can be automated and require little to
no human input.

 Agents take this approach to another level and allow decisions to become part of that process. Agents can
not only make decisions but break down more complex tasks into step-by-step approaches, improving
their success rate. Business roles can be assumed by one or more Agents, allowing for greater automation
of business processes.

 The cost of Agents when compared to human labor is remarkably low. LLMs provide the cognitive ability to
the Agent and are based on a large amount of human knowledge, allowing the Agent to complete
complex tasks previously completed by humans. The cost to train, integrate and then support humans in
organizations far out strips that of an Agent, which can not only be run more cheaply but also scaled to
provide more capability when needed.

PROMPT ENGINEERING
 Prompt Engineering consists of Prompts, Memory, and LLMs. These capabilities form the basis of

operating with LLMs and support the other Integrations.
 Prompt Engineering consists of providing context (i.e., questions and task related information) and task

specific short term memory, so the LLM can review and understand its steps.
 Compiling good Prompts in conjunction with the right context is critical to achieving desired outcomes.

Reusable yet specific Prompts are key to leveraging LLMs across multiple tasks.

Bench marking celebrated frameworks allows us to be opinionated about our approach yet still support a
diverse range of components that currently exist in the community. Plus, there is nothing stopping us from
developing and supporting either our own or clients’ unique agents, chains, tools, and memory constructs.

The fluidity of the design has the additional benefit of utilizing any LLM. Our recent developments rely on
OpenAI’s ChatGPT due to its current status as the premier LLM available today—but with an LLM platform, the
agent can use the then-leading (or perhaps more nuanced) product available. Models may offer different
cost/benefit ratios or specific functionality that our clients should be able to use to their needs for their specific
applications. Our clients should be able to use the model that offers the right capabilities at the right price at
the right time and be able to “hot swap” when needed.

Swapping LLMs is only one element of modularity considered within our Platform. All Integrations are loosely
coupled to the Agents, allowing us to again swap and change them as needed to best fit clients’ needs. For
example, the use of both open and closed source Tools can be utilized. The LangChain framework already
offers a Tool that can connect to GitHub, allowing agents to pull and push code commits as needed. If another
versioning system was used and needed to be closed source, say an internal BitBucket repository, then
another Tool would be developed for our client’s exclusive use.

8LLM Platform

ORGANIZATIONAL AND EXTERNAL KNOWLEDGE
 Long term memory can be provided to an LLM by using Indexes.
 An Index can contain a searchable compendium of organizational and external data, available to the LLM

and providing additional context. These can be vector stores or knowledge graphs, depending on the
requirements.

 Organizations need to be consistent in their approach to generating their own and use other data, and
regularly update Indexes to obtain the best results from the Agents.

INTEGRATING WITH OTHER ORGANIZATIONAL CAPABILITIES
 Agents utilize Tools to use additional external capabilities to complete tasks.
 Tools offer the ability to use organizational capabilities and allow Agents to fully integrate and comply with

organizational standards.
 Both common and bespoke capabilities can be used via Tools, particularly if they can be coded for and

offer Application Program Interfaces (APIs) or messaging systems.

EXTERNAL INTERFACES
 Business Users can communicate with Chains and Agents through a variety of Interfaces. Common

examples are natural language prompts (i.e., chats) as well as web or console based applications.
 Ideally, autonomous Agents would use organizational systems (e.g., ticketing system, story boards,

messages) rather than bespoke Interfaces. Saying that, the option exists and could be useful for a chat
based approach.

In the wake of technological advancements, large language models (LLMs) like
GPT-4 have ignited remarkable excitement, reshaping our interactions with
machines. These sophisticated AI systems, capable of generating human-like
text, translating languages, and even coding, have elevated expectations for
human-computer interaction and prompted extensive discussions about their
societal implications. Despite their potential, the current phase of LLM
development showcases a balance between excitement and caution. While
they approach the zenith of expectations, their limitations and ethical concerns
are also coming to light, marking the beginning of a phase of realism.

The digital landscape's swift evolution has pushed businesses to offer innovative
features to stay competitive, yet they grapple with a shortage of skilled
development staff. Software complexity, staff turnover, and the need to
automate routine tasks compound these challenges. ThoughtFocus,
understanding this complexity, envisions a future empowered by AI
technologies that address these multifaceted problems. Their innovative
approach involves creating autonomous Agents that navigate complexities,
freeing human resources to focus on value creation and innovation.

Central to this vision is the development of an LLM Platform that leverages
contemporary frameworks, enabling a flexible integration of diverse
components. ThoughtFocus recognizes that a one-size-fits-all approach won't
suffice and is committed to tailoring solutions to each client's unique needs. The
platform not only incorporates advanced LLMs but also emphasizes the
collaboration of these Agents, orchestrating them to autonomously tackle
complex tasks. This forward-thinking approach not only aims to bridge the
staffing gap and software complexity but also envisions a landscape where
human and machine collaboration brings about efficient results and a diverse
array of products.

In an era characterized by rapid technological advancements, ThoughtFocus'
commitment to an adaptable LLM Platform underscores the significance of
embracing innovation while accommodating the varied needs and challenges
of businesses. Their approach reflects a fusion of cutting-edge AI capabilities
with a human-centric focus, paving the way for a harmonious and productive
coexistence between humans and machines in the ever-evolving technological
landscape.

CONCLUSION

9LLM Platform

Analysis
To build our workable solution that meets a variety of clients’ needs, ThoughtFocus has decomposed
contemporary frameworks, determined the common components, and then integrated them into a single
platform. The LLM Platform provides the necessary guidance for our client teams, helping them build AI
applications quickly in an opinionated way, encouraging reuse, reducing duplication, and enabling integration
with multiple clients. Each of the common components will be discussed in the following paragraphs.

To us, an LLM is basically a prediction machine; it predicts the next word in a sentence based on a wealth of
previous information and identifying similar and related patterns. The model takes users’ questions as context,
breaks them down into tokens10, and determines the relationship between the tokens. Once complete, it
reverses the process by constructing a relationship in a sentence, filling the sentence with relevant tokens to
the original question and submits the answers to users. The technology behind this process is extremely
complex, sometimes beyond those that created the technology, but is a reasonably reliable method for
generating contextual answers. This extends beyond simple question and answer scenarios to writing code, an
area that we are interested in, and summarizing text. However, the model only returns what it knows and if
your organizational data has not been ingested during the model’s training, it cannot provide feedback on
organizational related data.

To make it more specific to organizations’ use cases, it needs to be provided memory, both short and
long-term. Short-term memory is partially provided by using Prompts. Prompts is where a user can provide
additional context to a question. The additional context can then be parsed by the LLM and used to inform the
answer to the question. Additionally, by keeping track of the conversational history and using this in addition
to one or more prompts the LLM can not only parse the latest Prompt but also the conversation, giving it even
further context to answer questions. Combined, the Prompt and conversation history (which we call Memory
in our platform) fulfils the short-term memory requirement.

Due to parsing limits (commonly called token limits) with LLMs, only so much information can be provided at
once therefore another method to store and provide greater organizational knowledge must be provided.
Indexes, primarily consisting of vector stores11, fulfil this need. Organizational data can be broken into pieces
(or chunked) then ingested into a vector store with an associated embedding, the embedding being model
interpretable metadata that allows it to be searched for relevancy. When information beyond the scope of the

APPENDICES

10LLM Platform

10 A token is a piece of text (e.g., a word, word part, and/or punctuation) that can be interpreted mathematically by a model. Using
tokens, relationships between different tokens are assessed and successive tokens can be predicted based on previously seen examples
of text (i.e., web articles, code bases, etc.).
11 A vector store is ‘a vector space … a set whose elements … generalize Euclidean vectors … characterized by their dimension’ (Wikipedia,
2023), which are used to store data embeddings (i.e., vectors) in n dimensions that can be searched and retrieved. Note that vectors are
stored for LLMs in several hundred dimensions depending on the embedding function.

11LLM Platform

current Prompt and Memory is required, it can be searched and retrieved from an Index. Indexes can be
constructed in multiple ways, but we have found that client data that is granularly chunked within a certain
token limit allows for retention, retrieval, and still falls within models’ token limits.

At this point we have enough to create natural language processing (NLP, e.g., chat) Interfaces for the “brain”
(consisting of LLM, Prompt, Memory, and Indexes) to respond to humans. With these Integrations users can
interrogate their own organizational data and let the LLM do the arduous work: finding the data, interpreting
the data, summarizing the data, and then providing the answer back to the user (with or without references
too). For organizations this could be enough, providing a semantic search capability on their own data and
providing it back in a reasonable amount of time with a summary. Other Interfaces can be provided too, such
as submitting data via a web form or providing a chat application that takes questions or data and provides an
answer.

Our approach is to take this further, noting that LLMs also have the unique ability to not only read, understand,
and summarize; they can also decide and create. Coupled with the Integrations presented, LLMs can act
autonomously within processes and decision trees, via Chains and Agents, respectively. Chains mimic existing
step-by-step processes that require more automation than a simple action, instead it requires creative output
or analysis based on a given context. A Chain can receive a suitable prompt and/or more context from either
short or long-term memory to create value, in a myriad of forms. For example, a quality assurance process may
require unit tests to be developed for classes and functions/methods. Given a suitable Prompt and context of
the code base from an Index, a Chain uses an LLM to create a unit test for one or more given classes and
functions. This unit test can then either be sent to a human for review or, depending on the level of trust given,
directly to a test suite for testing.

Taking this one step further, what if there was a requirement to not only create a unit test but to actively
interrogate existing code bases for test coverage, a decision to create a unit test given a certain result, and then
not only submission to but interpretation of a report from a test suite? This is where Agents fill the gap.
Autonomous Agents are a decision making capability based on inputs and guidelines created via multiple
Prompts. They can decide the steps to take given a small nudge by a user or other messaging system (e.g.,
tickets in an IT Service Management system), taking actions without human intervention or additional
prompting required. Agents interact with all earlier Integrations, using them appropriately as needed, and as
part of their own sequence of activities.

Once Agents can pull context as needed and create content via Chains, you then provide it with Tools to
interact with and operate external systems and create affect. Simply, Tools are routines or functions that allow
interaction with external systems and data. This is generally via an API but could also be binaries or
executables that are hosted locally. Tools come with their own names and descriptions, that an Agent can
understand to help it select the right Tool without human intervention. Tools are what turn Agents into
capable systems within your organization that are autonomous and, depending on the level of trust,
independently create affect for your organization.

12LLM Platform

Finally, Agents are not limited to working in isolation, and should operate with humans and other Agents alike.
Human feedback and interaction may be required by clients with low trust in the capability or where
innovative and unseen features are being built. For example, organizations may be limited by regulation and
must meet their obligations by introducing humans into the loop. Also, since LLMs are trained on historical
data, innovative and unseen features may require human input.

Agents working together offer unique advantages. Firstly, loosely coupled but collaborative Agents can be
orchestrated to achieve desired effects. Loose coupling allows multiple Agents to work on tasks, with scaling,
speeding up operations for an organization. Establishing an agreed messaging system between different
Agents allows for collaboration, where they know of each other, their roles, and how they can aid each other.
For example, specific Agents can be used to fulfil roles within a development team such as Product Owner,
Architect, Engineer, and Quality Assurance. These Agent roles are specific and inherently more accurate, as
their possible number of tasks are smaller and therefore easier to provide specific guidance too.

In summary, ThoughtFocus' LLM Platform amalgamates contemporary frameworks into a cohesive solution,
enabling rapid AI application development. LLMs predictive abilities, when combined with Prompts, Memory,
and Indexes, create powerful solutions to automating tasks traditionally completed by humans. Agents
expand LLMs’ capabilities, allowing for autonomous decision-making and content creation. Collaboration
among Agents enhances efficiency and effectiveness, making this platform a versatile tool for organizations,
increasing feature development and delivery speed with or without humans in the loop.

Implementation
We have been using an autonomous agent to generate unit tests for an open source and complex financial
application, Apache Finer act12 . The autonomous Agent calls on a test coverage tool that supplies information
on what requires new or more testing. Once a class and method are retrieved, the Agent decides what
information to retrieve from a local vector store. Finally, a unit test is created using the retrieved information
and then tested using the test suite.

The unit test Agent uses a series of tools to interact with chains, indexes, and external tools and complete the
task. The following diagram shows the number of tools used in relation to the LLM Platform.

12 (Apache, 2023)

Figure 3 Process flow undertaken by unit test agent.

Write Unit
Tests

Unit test
required?

Vector
store exists?

Create
vector store

Check if vector
 store exists

Retrieve
Information

on method and
associated class

Information
gathered?

Yes Yes Yes

Yes

Yes

End

Report to
User

Save to No Run test
suite

Report error
 to user

Testing
successful?

Write unit test for
method in new

 test class

Check if
this exists?

No
No

No

NoRun test coverage
 tool to check for

methods that require
 testing

This exists?

13LLM Platform

Using a simple script, we start the Agent, with the following prompt saying that the first step is reach out to a
test coverage tool to obtain a class and method that requires testing. Note the args.data_path variable that
allows selection of the code base directory.

Note however the Agent instead confirms that the Index (in this case a Chroma DB vector store) has items first.
This is an example of where the Agent makes its own decisions about the steps and in its chosen order. The
steps taken can be constrained further by being explicit to the agent but in this case we continue.

Figure 5 The Prompt sent to the Agent giving guidance on next steps.

Figure 6 The Agent checks the vector store has items.

Figure 4 Unit test agent high level architecture, including chain, tools, indexes, prompt and memory.

Co
de

 B
as

e

User initiates unit test agent

LLM Platform

Process & Autonomous Decision Making

Starts Agent Reports Results

Queries

Uses

Uses

Uses

Uses

OpenAI
Chat

Uses

In
de

xe
s

Retrieves

MemoryPrompt

Interacts with Provides Context

Base Model Connection

Creates & Searches

Saves & Reads

Runs

Integrations

Integrations

Integrations

Tests Coverage Suite

Local Files

Test Suite

DecisionsTools

Unit Test Agent

Tools

Maintains

Creates Unit
Test Chain

14LLM Platform

The Agent’s next step is to then reach out to a test coverage suite to retrieve a class and method that requires
testing. In this case, we utilize test coverage tool that returns a specific class and method, however, similar tools
interacting with more complex test coverage suites can be built.

Once the class and method has been retrieved, the Agent searches the vector store for context. It retrieves
three documents (i.e., chunks) from the store, where the first chunk contains the specific method for testing.
The Agent may use the vector store to retrieve more chunks of data if needed.

The next step is to construct a unit test, using the Agent’s LLM providing the necessary input based on the
context (i.e., code) provided. The LLM in this case is OpenAI’s ChatGPT 4, which has the required understanding
to create code to satisfy the ask.

Figure 7 The Agent confirms a class and method requires unit test.

Figure 8 The Agent uses a vector store to retrieve context.

15LLM Platform

Once the test class has been generated, the Agent then uses its tool to save the file to disk and then runs the
test suite.

Once the test suite is complete, the suite issues a report back to the agent captured below at the console. The
Agent sees that errors were encountered and as instructed, reports this back to the user. It also includes a
recommendation to the user.

Figure 9 The Agent creates a test class based on the submitted code (Note output has been truncated)

Figure 10 Agent saves the test class file to disk.

Figure 11 Agent runs the test suite.

16LLM Platform

Discovering test coverage and then writing a test case are two slightly complex tasks traditionally completed
by a human. Now these tasks can be automated by one or more Agents, depending on the desired delivery
speed, leaving human developers to continue working on high priority tasks.

Figure 12 The test suite reports errors to the Agent.

Figure 13 The Agent provides a summary of what has occurred with a recommendation.

REFERENCES

17LLM Platform

Alexander, L., & Jackie, F. (2003, May 30).
Understanding Gartner's hype cycles. Strategic Analysis Report No R-20-1971, pp. 2-12.

Apache. (2023, 08 03). Fineract.
Retrieved from GitHub: https://github.com/apache/fineract

Auto-GPT. (2023, August 3). The official website for Auto-GPT.
Retrieved from Auto-GPT: https://news.agpt.co/

Brown, T. B., Mann, B., Ryder, N., Subbish, M., & Kaplan, J. (2020). Language Models are Few-Shot Learners.
Advances in neural information processing systems, 33, 1877-1901.

Capranos, D., & Magda, A. J. (2023). Closing the Skills Gap. New York: Wiley.

Carey, S. (2021, November 1). Complexity is killing software developers.
Retrieved from InfoWorld: https://www.infoworld.com/article/3639050/complexity-is-kill-
ing-software-developers.html

Carnes, R. (2020, April 9). Software Architecture and Complexity.
Retrieved from LinkedIn: https://www.linkedin.com/pulse/software-architecture-complexity-ray-carnes/

Cassel, D. (2020, 10 18). Where is the Complexity of Modern Software Coming from?
Retrieved from TheNewStack: https://thenewstack.io/where-is-the-complexity-of-modern-software-coming-from/

Dhinakaran, A. (2023, April 26). Survey: Massive Retooling Around Large Language Models Underway.
Retrieved from Forbes: https://www.forbes.com/sites/aparnadhinakaran/2023/04/26/sur-
vey-massive-retooling-around-large-language-models-underway/

Forbes. (2023, July 24). Why Large Language Models Like ChatGPT Are Scary And Also Useful.
Retrieved from Forbes: https://www.forbes.com/sites/forbestechcoun-
cil/2023/07/24/why-large-language-models-like-chatgpt-are-scary-and-also-useful/

Gartner. (2022, August 10). What’s New in the 2022 Gartner Hype Cycle for Emerging Technologies.
Retrieved from Gartner: https://www.gartner.com/en/arti-
cles/what-s-new-in-the-2022-gartner-hype-cycle-for-emerging-technologies

Hu, K. (2023, February 2). ChatGPT sets record for fastest-growing user base - analyst note.
Retrieved from Reuters: https://www.reuters.com/technology/chatgpt-sets-record-fast-
est-growing-user-base-analyst-note-2023-02-01/

LangChain. (2023, August 3). Power yourapplications withLarge LanguageModels.
Retrieved from LangChain: https://www.langchain.com/

18LLM Platform

McGillivray, P. (2023, July 4). The Gartner Hype Cycle - A Perspective on the Evolution and Future of Large Language
Models.
Retrieved from LinkedIn: https://www.linkedin.com/pulse/gartner-hype-cycle-perspec-
tive-evolution-future-paul-mcgillivray/

OpenAI. (2023, March 14). GPT-4.
Retrieved from OpenAI: https://openai.com/research/gpt-4

Statista. (2023, May 15). Amount of companies using ChatGPT in their business function in 2023, by industry.
Retrieved from statista: https://www.statista.com/statistics/1384323/industries-using-chatgpt-in-business/

SuperAGI. (2023, August 3). Infrastructure to Build, Manage & Run <Autonomous Agents>.
Retrieved from SuperAGI: https://superagi.com/

Tamkin, A., & Ganguli, D. (2021, Feb 5). How Large Language Models Will Transform Science, Society, and AI.
Retrieved from Stanford University - Human-Centered Artificial Intelligence: https://hai.stan-
ford.edu/news/how-large-language-models-will-transform-science-society-and-ai

Wikipedia. (2023, July 25). Vector space.
Retrieved from Wikipedia: https://en.wikipedia.org/wiki/Vector_space

betterfuturefaster@thoughtfocus.com

ABOUT THOUGHTFOCUS

ThoughtFocus helps forward-looking companies and organizations in the financial services, manufacturing,

higher ed, public sector and emerging sectors innovate and achieve a better future faster. ThoughtFocus’

innovative and cutting-edge technology solutions enable its customers to deploy new capabilities faster,

deliver better user experiences, and drive operating efficiencies. We do this through executional excellence

and mitigating the risk of change. With headquarters in the U.S., the Company has more than 2,100

employees in locations spread across five countries.

For more information, please visit the company website www.thoughtfocus.com

Authored By:
Chris Mills

Reviewed By:
Zak Alford, Jadarius Hill, Nelson Velazquez

